
Crafting Label Noise to Increase

Adversarial Vulnerability in Deep

Learning Models

Candidate Number: 1048673

A thesis submitted for the degree of

MSc in Computer Science

Trinity 2021



Abstract

Deep Neural Networks have achieved the state of the art in many tasks. However,

recently there have been concerns regarding their robustness, and hence reliability,

when being deployed in sensitive applications. Szegedy et al. [33] showed that neural

networks can be easily fooled, by adding small perturbations to the input. There has

been a recent surge of interest in the direction of purposefully making modifications

to datasets in order to increase the vulnerability of neural networks trained on

them, as an attack. Such modifications to datasets with malicious intent is called

dataset poisoning [30, 5]. Label flipping is one such dataset poisoning attack, where

certain samples from a dataset are chosen, and mislabeled on purpose. Surprisingly,

neural networks manage to generalise very well, even after memorising label noise

[3]. However, their adversarial accuracy drops significantly [29]. In this thesis, we

will study the nature of decision boundaries learnt by networks as they memorise

label noise. Our attempt is to then utilise this knowledge to craft label noise, i.e.,

select points to flip in a dataset, in order to maximise the adversarial vulnerability

of networks trained on it.

We first extend a previous theoretical result regarding uniform label noise with

Lipschitzness assumptions and discuss an example where Lipschitzness hurts the

adversarial accuracy of the classifier. Then, we systematically study different prop-

erties of deep neural networks memorising label noise and end with a strategy that

provides a way to select points which when label-flipped, hurt the adversarial accu-

racy of trained networks massively.

2



Contents

1 Introduction 5

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 The supervised classification problem . . . . . . . . . . . . . . . . . . 9

2.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Training algorithms . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Adversarial risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Standard attacks on DNNs in literature . . . . . . . . . . . . . . . . . 18

2.4.1 Fast Gradient Sign Method . . . . . . . . . . . . . . . . . . . 19

2.4.2 Projected Gradient Descent . . . . . . . . . . . . . . . . . . . 19

2.5 Benign overfitting and label noise . . . . . . . . . . . . . . . . . . . . 21

2.6 Dataset poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Is Lipschitzness always beneficial for robustness? 25

4 Crafting Label Noise 31

4.1 Toy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Classes far away from the decision boundary . . . . . . . . . . 32

3



CONTENTS 4

4.1.2 Classes close to the decision boundary . . . . . . . . . . . . . 35

4.2 Flipping to a new class in MNIST . . . . . . . . . . . . . . . . . . . . 37

4.3 Analysis using adversarial paths . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Finding a path from a point to the boundary . . . . . . . . . . 39

4.3.2 Using adversarial paths to analyse poisons . . . . . . . . . . . 40

4.3.3 Adversarial Path Experiments . . . . . . . . . . . . . . . . . . 42

5 Future Work: A Meta-Learning Approach 46

6 Early Unsuccessful Experiments 51

6.1 Building graphs on training points . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Building graphs on input space . . . . . . . . . . . . . . . . . 53

6.1.2 Using Low Rank representations . . . . . . . . . . . . . . . . . 54

6.1.3 Using the feature representations of a trained network . . . . . 55

6.1.4 Using the feature representations of a trained network as well

as input space . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Colouring trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Conclusion 58

Appendices 68

A Fitting Neural Networks to low dimensional data 69



Chapter 1

Introduction

1.1 The Problem

Deep Neural Networks (DNNs) have gained a lot of popularity in the machine learn-

ing community. The fact that they are universal approximators [13], coupled with

the development of good training algorithms and an abundance of data and powerful

hardware, are some factors that have contributed to their popularity. These have

helped deep learning achieve the state of the art in many tasks, from computer vision

[18], to machine translation [32, 34], to achieving superhuman performance in board

and computer games [31, 35]. However, the reliability of neural networks is still in

question. The work of Szegedy et al. [33] opened up a new line of research on the

robustness of neural networks against adversarial perturbations. Neural networks

seem to be sensitive to small changes in the input. These changes can be carefully

crafted, such that the network misclassifies the perturbed input, which might seem

to be a benign sample to the human eye. Figure 2.1 shows an example.

Recent works [3, 37] have pointed out that several over-parameterised machine

learning models can memorise label noise (mislabeled points), which is surprisingly

already present in widely used datasets [29] such as MNIST [20] and CIFAR-10

[17], without showing a noticeable drop in their test accuracies. This has been

5



CHAPTER 1. INTRODUCTION 6

investigated with artificially induced label noise in standard datasets as well [37],

and is referred to as benign overfitting.

However, memorising noisy data does come with downsides. Sanyal et al. [29]

investigated the consequences of memorising uniform label noise on the adversarial

error of the model. They showed that the adversarial error increases in the presence

of such label noise because the model becomes increasingly vulnerable in regions

where a wrong label has been memorised. Hence, a model that is trained on data

with label noise might perform very well on unseen test data, but it will be highly

adversarially vulnerable, much more than what a model trained on clean data would

be. This means we, as attackers, can add human imperceptible perturbations to the

inputs of this network and get the network to misclassify them.

While Sanyal et al. [29] experimentally and theoretically investigated a setting

where models memorise uniform label noise, there has not been any study towards

carefully crafting label noise such that if it is memorised, robustness is hurt mas-

sively. More precisely, the question we seek to answer is: mislabeling which points

in a dataset would cause a greater fall in the adversarial accuracy? The answer to

this question could be used to select points in a dataset which we could mislabel,

and render a victim’s model, trained on this “poisoned” data, to be highly adver-

sarially vulnerable. The number of points we can flip is constrained by a budget.

Victims who might deploy their model trained on such a poisoned dataset, will have

vulnerabilities in their system. This study is also in the hope that we can uncover

some properties of neural networks fitting mislabeled points, and observe the effects

of memorising label noise, so that we might be able to come up with defences to the

same.

The bound proven in Theorem 1 of Sanyal et al. [29] makes no assumption

regarding the classifier that memorises a dataset with uniform label noise. The

worst case for high adversarial error is assumed in order to arrive at the bound: the

case where mislabeled points get memorised discontinuously. In this worst case, the



CHAPTER 1. INTRODUCTION 7

classifier gets the highest possible test accuracy, getting the wrong answer only at

mislabeled points, and nowhere else. The bound naturally follows from this. There

exist lp balls of radius ρ (the attack radius) around mislabeled points within which all

points are vulnerable. In practice, networks learned with SGD are much smoother,

and end up learning regions around these mislabelled points where the network will

produce the wrong label, rather than just at the mislabelled points. Our aim is to

also study the nature of these regions. The experiments in this thesis reveal whether

these regions are separate pockets, such that nearby points become vulnerable, or

are extensive regions which render regions far away from the mislabeled training

point vulnerable.

1.2 Contributions

Our contributions in this thesis are threefold:

1. Extending a previous theoretical result on the adversarial risk of classifiers

memorising data with label noise, with added Lipschitzness assumptions on

the classifiers, in the context of uniform label noise.

2. Showing that placing mislabeled points at the highest probability density re-

gions does not hurt adversarial accuracy much, indicating that the proven

theoretical bound in literature is vacuous in practice.

3. Coming up with an experimental setup that helps identify points which are

best to be mislabeled, for hurting the adversarial accuracy of a model trained

on them. The experiments we did also indicate why randomly selecting points

to label-flip in a popular dataset like MNIST is still very good. Points which

massively hurt adversarial accuracy on being mislabeled turn out to be high

in number. The experiments also identify a significant property of mislabeled

points that causes such a massive drop in the adversarial accuracy: they draw



CHAPTER 1. INTRODUCTION 8

and stretch the decision boundary, and this will be explained in detail in

chapter 4. While our final procedure is not a function into which we can simply

plug in a dataset and receive a poisoned version, we do have an impactful

toolset that guides the selection of training points to label-flip.



Chapter 2

Background

2.1 The supervised classification problem

Consider a distribution P : Rd → R≥0 from which datapoints are sampled, and a

function c : Rd → Ω, called the ground truth function. Ω is a discrete set of classes

that instances from Rd need to be mapped into. Given n points sampled i.i.d. from

P , in a training set D = {(xi, yi = c(xi))}ni=1, the supervised classification problem

is to find a function with high probability, that classifies samples from P reliably

as c would have. This notion of reliability is captured formally through the natural

risk.

The natural risk RNat(C) of a classifier C : Rd → Ω, is defined as

RNat(C) = Px∼P [c(x) 6= C(x)] =

∫
Rd
P(x) · Jc(x) 6= C(x)K dx (2.1)

In other words, the natural risk is the probability of the classifier producing the

wrong answer. In practice, we carry out a Monte-Carlo estimation of the natural

risk, by finding the fraction of points in an unseen set of points sampled i.i.d. from

P (called the “test set”) for which the classifier gets the incorrect output. This

estimate is also called the “test error”, or “empirical risk”. Precisely, let this test

set be denoted as Dtest = {(xi, yi = c(xi))}mi=1. Then the empirical risk is computed

9



CHAPTER 2. BACKGROUND 10

as

R̂Nat(C) =
1

|Dtest|
·

∑
(x,y)∈Dtest

Jy 6= C(x)K

C is a “hard” classifier in the discussion above. It produces one class in its

output. We will be dealing with probabilistic classifiers as well in our discussions,

where C : Rd → ∆|Ω| produces a probability distribution over classes, where ∆k is

the k-dimensional simplex. In such a case, the final decision made by the classifier

is considered to be arg max
x∈Ω

C(x). The nature of the classifier under study will be

clear from the context, and all classifiers producing a distribution over the classes

will be explicitly referred to as probabilistic classifiers.

2.2 Neural networks

Deep Neural Networks are a family of over-parameterised models. They are proven

universal approximators [13], which means with enough parameters, they can ap-

proximate any function with arbitrarily small error.

DNNs are composed of layers, with each layer parameterised by weights and

biases. Each layer takes in a vector and produces another vector. This is done by

first doing an affine transformation of the input vector, which is entirely specified by

the weight matrix and bias of that layer. This transformation yields a vector which

is then passed through an activation function. DNNs acquire their non-linearity

through these activation functions. More precisely, let the ith layer of a network

be denoted as Li : Rdi → Rdi+1 . Let its weight matrix be Wi ∈ Rdi×di+1 , bias be

bi ∈ Rdi+1 and activation function be σi. Then the layer Li is defined as the following

function:

Li(x) = σi(Wix + bi)

Then the entire DNN is simply a composition of all of its layers. Precisely, a



CHAPTER 2. BACKGROUND 11

DNN C : Rdin → Rdout having k layers L1, ..., Lk is given as

C = Lk ◦ Lk−1... ◦ L1

The weights and biases of a DNN constitute the parameters of that DNN. The series

of computations we perform while finding the outputs of each layer for a given input

is called a forward pass.

The ReLU activation function is the most popular one. It is defined as

ReLU(x) =

 0 x ≤ 0

x x > 0

Two other popular activation functions are the sigmoid and tanh activations

sigmoid(x) =
1

1 + e−x

and

tanh(x) = 2 · σ(x)− 1

The above definitions involve scalar inputs to these functions. We will overload

vector inputs for the activation functions defined above, such that each dimension

in the input vector is passed through the activation function considered.

For classification problems, we require the network to output a probability distri-

bution over classes in Ω. This is achieved by using the softmax activation function,

defined as:

softmax : Rk → ∆k ; softmax(x) = x′ s.t. x′i =
exi∑k
j=1 e

xj

where ∆k refers to the k dimensional simplex.

The softmax function is essentially a continuous version of the one-hot-argmax

function, which returns a one-hot vector of same dimensionality, with a 1 at the index



CHAPTER 2. BACKGROUND 12

with the maximal value in the input vector, and 0 elsewhere. The above activation

produces a probability distribution over the dimensions. Hence, in networks used

for classification problems, we generally augment the final layer, producing a |Ω|-

dimensional output, with the softmax activation function.

The dimensionalities of each layer, activations, number of layers, etc. are design

choices, and these constitute the architecture of the network. Any such design

choice, be it the number of layers or the activation functions used, induces inductive

biases. We assume that there exists a function that is a good enough approximation

of the function we want, in the family of functions we search over, referred to as

the hypothesis class. For instance, the hypothesis class could be the set of neural

networks with different values for their parameters, but having the same architecture.

Now, we will need to search over this family of functions with the same architecture

for the “best” one, having certain values for its parameters, which is what the

training algorithm does.

Convolutional Neural Networks (CNNs) are DNNs that perform very well on

image data [18, 19], by capturing spacial correlations in images. All experiments on

image datasets done in this thesis utilise CNNs.

2.2.1 Training algorithms

Gradient Descent is an optimisation technique that assumes a first order approxima-

tion of the objective function. Given a function f(x), which needs to be minimised

over x, gradient descent attempts to find a minimum by iteratively updating the

current best as:

xi+1 = xi − α · ∇xf(x)
∣∣
x=xi

where α is a hyperparameter called the learning rate. Hence, gradient descent re-

quires gradients of f computed w.r.t x.

In machine learning, we might frequently require optimising over objective-



CHAPTER 2. BACKGROUND 13

functions of the form 1
m

∑m
i=1 gi(x). Often, each term of this sum is the contribution

of each individual point in the training-set to the objective. This requires gradient

descent to evaluate

∇x
1

m

m∑
i=1

Li(x) =
1

m

m∑
i=1

∇xLi(x)

This is usually computationally expensive to evaluate, since one gradient descent

step will require computing gradients for each term, which frequently equates to

computing average gradients over the entire training set. Stochastic Gradient De-

scent (SGD) involves sampling one sample from the training set, and executing a

gradient descent step using the gradients for that sample, rather than the entire

training set. Better estimates of the mean gradients can be obtained by taking more

than one sample, and this is referred to as “mini-batch gradient descent”, and is

standard in practice. 1

There are many other first-order gradient based optimizers, the most popular

one being the Adam optimizer [16]. Intuitively, Adam computes adaptive learning

rates, and has much higher convergence rates in practice, compared to vanilla SGD.

In all of the experiments in this thesis, Adam is the optimizer used.

2.2.2 Loss functions

To train Neural Networks, we need to have a metric that captures how “good” a

network is. We could then optimise over this metric, and tweak the parameters of

the model hoping that the resultant model will have a low natural risk. Such metrics

are called loss functions.

For classification problems in this thesis, we will be using the Cross Entropy

Loss, which is standard for neural network classifiers. For a “target” distribution P ,

and a distribution Q both over a set Ω, the cross-entropy H between P and Q has

1Sometimes, SGD might implicitly refer to mini-batch gradient descent. In mini-batch gradient
descent, we sample a small batch of training points from the training set and use that batch for
one gradient update.



CHAPTER 2. BACKGROUND 14

the lowest value when P = Q, and high values when Q is very different from P .

H[Q,P ] = −
∑
ω∈Ω

P (ω) logQ(ω)

Given an input example x, labeled with y = c(x), a probabilistic classifier C :

Rd → ∆|Ω| produces a distribution over the set of classes Ω. The cross-entropy

loss for this classifier at the given datapoint (x, y) evaluates to H[C(x),y] where

y ∈ ∆|Ω|,yj = Jj == yK. For convenience, we overload the cross-entropy loss to

handle elements from Ω in its second argument. This discrete input will simply be

treated as an appropriate one-hot encoded vector.

2.2.3 Backpropagation

To train a neural network Cθ parameterised by θ with the algorithms mentioned in

section 2.2.1, we require to compute Ex∼P [∇θL(C(x), c(x))] where P is the data dis-

tribution. In practice, this is done by sampling a batch of b samples B ⊆ Dtest, |B| =

b uniformly from the training-set, and computing 1
b

∑
(x,y)∈B∇θL(C(xi), y), in order

to carry out batched updates.

In order to do this computation in neural networks, we require to methodically

apply the chain rule. The backpropagation algorithm does this. We first record all

computations we do during the forward pass, and the following recursive relation is

utilised to find the gradients of the loss with respect to one value in this forward

pass. Let this value be v, and all values dependent on v be u1...uk. Let L denote the

final value whose gradient we are to compute, w.r.t. v, assuming we already have

∂L
∂u1
... ∂L
∂uk

and we know how to compute ∂v
∂ui

for all i ∈ [1..k]. Then,

∂L

∂v
=

k∑
i=1

∂v

∂ui
· ∂L
∂ui

So we start from ∂L
∂L = 1, and work “backwards” from there to compute all



CHAPTER 2. BACKGROUND 15

gradients, where L is the loss.

The relation above can be applied to any model such that for each operation

carried out in the model, we can compute gradients of the operation’s outputs w.r.t.

its inputs, and allows for far more flexibility than than just working for the DNN

architectures we discussed.

2.3 Adversarial risk

Szegedy et al. [33] discovered a significant property of Deep Neural Networks: they

are sensitive to changes in the input. Networks trained on data drawn from a dis-

tribution perform very well on unseen data from the same distribution, for example

that of handwritten digits. But, DNNs are extremely sensitive to small, almost

human imperceptible input perturbations. This aspect of models is generally re-

ferred to in literature as Adversarial Vulnerability. Goodfellow et al. [9] and Madry

et al. [22] showed some methods to craft such perturbations, and these are called

adversarial attacks. These attacks will be discussed later, in section 2.4.

This sensitivity to input perturbations is a significant vulnerability, since the

changes in the input can be imperceptible to humans. Deep Learning models, with

their improving real-world performance [18, 11], are beginning to get deployed in

mission critical systems [4], and such vulnerabilities raise questions about the relia-

bility of neural networks for such applications.

The adversarial vulnerability of classifiers is quantified through the adversarial

risk. While there are a multitude of ways in literature in which adversarial vul-

nerability has been defined, we are concerned with adversarial vulnerability in the

context of lp perturbations. The adversarial risk in this context is parameterised

by ρ and p, the attack-radius and attack-norm respectively. The adversarial risk

Rρ
Adv(C) of a classifier C : Rd → Ω in a classification problem where datapoints are

drawn from the distribution P : Rd → R≥0, and c : Rd → Ω is the ground truth



CHAPTER 2. BACKGROUND 16

labeling function, where Ω is the set of classes, is defined as

Rρ
Adv(C) = Px∼P [∃x̃ ∈ Bpρ(x) s.t. c(x) 6= C(x̃)]

=

∫
Rd
P(x) J∃x̃ ∈ Bpρ(x) s.t. c(x) 6= C(x̃)K dx

(2.2)

where Bpρ(x) is the set of all points inside an lp ball around x, given by

Bpρ(x) = {x′ ∈ Rd | ρ ≥ ‖x′ − x‖p}

for some norm p.

The adversarial risk intuitively captures the probability that we get an input x

such that it can be perturbed, so that the classifier gives an output that x was not

labeled with. Further, this perturbation has to be within a constrained region. This

definition attempts to formalise the notion of “imperceptibility” of such attacks,

through the lp-ball constraint. In practice, this risk is estimated by utilising some

standard attack strategy to calculate perturbations, such as those explained in sec-

tion 2.4. We then find the fraction of test-set points for which the attack strategy

could successfully find a perturbation that could make the classifier misclassify. This

fraction gives the adversarial error of the classifier, an estimation of the adversarial

risk. The adversarial accuracy of the classifier is the fraction of test-set points for

which the attack strategy could not find a perturbation that gets the classifier to

misclassify.

Given a probabilistic classifier C : R→ ∆|Ω| and a point x ∼ P , the problem of

finding an adversarial example for x, i.e. finding an x̃ ∈ Bpρ(x) s.t. c(x) 6= C(x̃) can

be solved by solving the following constrained optimisation problem:

x̃ = arg max
u∈Bpρ(x)

L(C(u), c(x))

where L is a loss function, and could be the same loss function used to train the



CHAPTER 2. BACKGROUND 17

(a) Classified as a
“5”

(b) Classified as a
“3”

Figure 2.1: A convolutional neural network trained on the MNIST dataset, attained
99.19% test accuracy. The classifier predicts the image of “5” on the left correctly
with 100% confidence. The same “5” was perturbed, within a 0.04 l∞ radius of the
original “5”. The same classifier classifies this “5” as a “3”, with more than 60%
confidence. This classifier has 0% adversarial accuracy for a 0.3 l∞ radius, which
means for each point in the test set, we can find a small enough perturbation to add
to the original image, and get the classifier to misclassify. The reader might need
to view the page from different angles to perceive the difference between the two
images.

model. So we maximize this loss inside the lp ball around x to find an adversarial

example. The solution to the above optimisation problem is an untargeted adversar-

ial example. This means that the resultant adversarial example could be classified

by the model as any wrong class, which is why we call algorithms that solve or

approximate the above as untargeted attacks.

We could also have targeted attacks, which provide greater control to attack-

ers. Targeted attacks involve creating adversarial examples such that the classifier

classifies it to be of a particular target class. Let the target class be t. Then the

constrained optimisation problem for a targeted attack around x is

x̃t = arg min
u∈Bpρ(x)

L(C(u), t)

The brief review on attack strategies that follows this discussion is based on

different ways to go about computationally solving the above optimisation problems.



CHAPTER 2. BACKGROUND 18

2.4 Standard attacks on DNNs in literature

Here, we discuss 2 popular adversarial attack techniques in literature. When we use

the term attack, the problem we attempt to solve is finding an adversarial example,

i.e., given a point x sampled from the data distribution, we are to find out a point x′

within an lp ball (of some radius ρ) around x, such that the model gives an output

y ∈ Ω \ {c(x)} for x′. For a targeted attack, given a point x with label c(x) from the

data distribution, we are to find a point x′ inside an lp ball of certain radius around

x, such that the model classifies x′ as a target class t.

Reiterating, our objective will be to solve a constrained optimisation problem,

minimising or maximising the loss, depending on whether or not we are doing a

targeted or untargeted attack.

Let L : ∆|Ω|×Ω→ R be the loss function considered. For our discussion, it does

not matter which loss is used, as long as it penalizes, or has high values when the

model produces the wrong class prediction, and low values when it gives the right

one. The cross entropy loss is the most popular choice. Given a data-point x and

neural network classifier Cθ (modelling a probabilistic classifier) parameterised by θ,

these methods rely on computing the loss value by forward propagating through Cθ,

and then backpropagating, computing gradients all the way to the inputs, finding

the gradient of the loss with respect to the input.

Essentially, we compute the following:

∆x = ∇pL(Cθ(p), y)
∣∣
p=x

We use the above computed value to carry out gradient ascent on the input for

untargeted attacks, and gradient descent on the same for targeted attacks, setting

y = t where t is the target class. Since we require access to the model and all

the computations done by it to compute the gradient above, these attacks are also

referred to as white box gradient based attacks. There exist black box [10, 1, 14]



CHAPTER 2. BACKGROUND 19

attacks as well, where access to, or knowledge about the model is restricted. These

black box attacks are however, out of the scope of our discussion.

2.4.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) [9], is a one step procedure, and requires

only one forward-backward pass through the network. The constraint assumed for

the attack is ε radius in l∞ norm, which allows the attacker to produce adversar-

ial examples for x within an ε radius l∞ ball around x. The adversarial example

produced by FGSM is given by:

x′ = x + ε · sign(∇pL(Cθ(p), y)
∣∣
p=x

)

for an untargeted attack, and

x′ = x− ε · sign(∇pL(Cθ(p), t)
∣∣
p=x

)

for a targeted attack. The sign function is given by:

sign(x) =

 0 x = 0

x
|x| x 6= 0

and the above function is overloaded to vectors as an element-wise operation. The

sign of gradients, scaled by ε are used for updates to ensure that the perturbation

added is small.

2.4.2 Projected Gradient Descent

The Projected Gradient Descent (PGD) [22] attack is the most popular adversar-

ial attack in literature, and is much stronger than the single-step FGSM attack.

Throughout this thesis, wherever we refer to attacks in experiments, we refer to



CHAPTER 2. BACKGROUND 20

PGD attacks. Popularly in literature, and in this thesis as well, whenever the ad-

versarial accuracy of a network has to be evaluated, we iterate through the test set,

and find out the fraction of the test set for which the PGD attack was unsuccessful.

2

The PGD attack requires the following arguments and hyperparameters:

1. Attack-steps m: This is the number of iterations the PGD algorithm is going

to take. The PGD algorithm will execute m forward-backward passes through

the model.

2. Step-size µ: This is the size of each update the algorithm will carry out.

3. Attack-norm p: Perturbations are constrained to be within a region around

the input x. This distance constraint is in the form of a norm, which we will

call the attack-norm. For instance, perturbations could be constrained within

an l∞ ball (p = ∞) centered at the input. The l∞ norm is the most popular

choice for p, and we have used the same for our experiments as well.

4. Attack-radius ε: This is the radius of the lp ball around the original image

within which the perturbed image should lie. It is logical to have mµ ≥ ε.

Otherwise, it will be equivalent to having a smaller attack-radius. For a fixed

ε, increasing p allows for stronger attacks.

We repeatedly perturb the current perturbed image using FGSM, and project it

back onto the lp ball around the original input. Using the PGD algorithm with

attack norm p is generally also referred to as “using an lp PGD-adversary”. The

attack strategies we discussed are specified in algorithm 13.

2We utilised the immensely useful Robustness library by Engstrom et al. [6] and some custom
modifications of their source code when required for the adversarial evaluations. PyTorch [24] was
used for Neural Network training, and scikit-learn [25] for some of its useful built-in models, such
as PCA and Nearest Neighbour classifiers.



CHAPTER 2. BACKGROUND 21

Algorithm 1 Projected Gradient Descent

1: procedure Targeted-PGD(Cθ,x, t, ε, p,m, µ)
2: x0 ← x
3: for i← [1..m] do
4: xi ← Targeted-FGSM(Cθ,xi−1, t, µ)
5: xi ← Project(xi,Bpρ(x)) . Project onto lp ball around x

6: return xm

7:

8: procedure Untargeted-PGD(Cθ,x, y, ε, p,m, µ)
9: x0 ← x

10: for i← [1..m] do
11: xi ← Untargeted-FGSM(Cθ,xi−1, y, µ)
12: xi ← Project(xi,Bpρ(x)) . Project onto lp ball around x

13: return xm

14:

15: procedure Targeted-FGSM(Cθ,x, t, ε)
16: d← Cθ(x) . Forward pass. d ∈ Γ(Ω) is the network’s output
17: `← L(d, t) . Operations are recorded to support backward-pass
18: ∆x← ∇pL(Cθ(p), t)

∣∣
p=x

. Backpropagate

19: x′ ← x− ε · sign(∆x)
20: return x′

21:

22: procedure Untargeted-FGSM(Cθ,x, y, ε)
23: d← Cθ(x) . Forward pass. d ∈ Γ(Ω) is the network’s output
24: `← L(d, t) . Operations are recorded to support backward-pass
25: ∆x = ∇pL(Cθ(p), y)

∣∣
p=x

. Backpropagate

26: x′ ← x + ε · sign(∆x)
27: return x′

2.5 Benign overfitting and label noise

As shown by Zhang et al. [37], networks show respectable generalisation error even

after memorising training data that has high levels of label noise. This phenomenon

of DNNs is referred to in literature as benign-overfitting. Bartlett et al. [2] studied

this phenomenon in the context of linear regression problems.

Sanyal et al. [29] showed that while benign overfitting does not significantly harm

the natural accuracy of classifiers, it massively harms the adversarial accuracies of

the same models, studying the problem mainly in the context of uniform label noise.

All experiments in this thesis are consistent with the same: classifiers trained on



CHAPTER 2. BACKGROUND 22

noisy data have high natural accuracy but low adversarial accuracies.

A significant theoretical result shown by Sanyal et al. [29] is the following:

Theorem 1. Let C be a classifier, and P : Rd → R≥0 the data distribution, and

c : Rd → Ω be the ground truth labeling function, where Ω is the set of classes. If

there exist constants c1 ≥ c2 > 0, ρ > 0 and a finite set ζ ⊂ Rd, such that

1. Px∼P

[
x ∈

⋃
s∈ζ
Bpρ(s)

]
≥ c1

2. ∀s ∈ ζ, Px∼P [x ∈ Bpρ(s)] ≥ c2
|ζ|

3. ∀s ∈ ζ, ∀u,v ∈ Bpρ(s), c(u) = c(v)

where Bpρ(x) is a ρ-radius lp ball around x. Let S be a training set, obtained by taking

n i.i.d. samples from P, and labeling each sample x with c(x) with probability η, or

some incorrect class in Ω \ {c(x)} with probability 1− η. Let C be a classifier such

that it has a 100% training accuracy on S. Then, if n ≥ |ζ|
ηc2

log(|ζ|/δ), with at least

1− δ probability, R2ρ
Adv(C) ≥ c1.

Theorem 1 establishes that if the data distribution has regions of high probability

density, then a classifier trained on data sampled from that distribution, injected

with uniform label noise will have high adversarial error, with high probability.

Secondly, the result does not require any assumption regarding the classifier. C

could be a 1-nearest-neighbour classifier or a massive neural network, as long as it

memorises the entire training set. The adversarial risk in the bound comes from the

nearby probability mass, around mislabeled training points.

This result inspired the first several algorithms we tried out, which were based

on the idea that placing mislabeled points at the highest probability density regions

might be optimal to harm the adversarial accuracy of models trained on the data.

This is for the case where there is no uniform label noise. Rather, we as attackers,

are allowed to change the labels of a few points in the dataset.



CHAPTER 2. BACKGROUND 23

2.6 Dataset poisoning

Dataset poisoning [30, 5] is a general term referring to the manipulation of a dataset

by an agent, in order to cause vulnerabilities in any system that relies on this data.

Modifications could be adding new malicious samples, changing existing samples, or

perhaps changing labels.

Backdoor attacks [5, 28, 38] are popular dataset poisoning attacks which involve

crafting and placing data-points such that if a neural network classifier ends up

memorising this point, it will have certain regions that are adversarially vulnerable.

The name “backdoor” comes from the fact that samples that would seem to be of

class A to us humans, will be learned by the classifier to be of class B, creating a

region (a “backdoor”) where we as attackers, can later query inputs (these inputs

may be adversarial examples) of one class, while the classifier predicts those inputs

to be of another class.

Label flipping attacks [36, 27] are poisoning attacks where we as attackers can

change the labels of points in the dataset. For example, we might flip malicious

emails and label them as spam in an email dataset, and any spam detection net-

work that learns from this dataset will have poor accuracy (natural or adversarial,

depending on the attack), at least for a subset of possible emails, which we can later

use to our advantage when the model gets deployed.

Dataset poisoning attacks constitute a relevant problem. This is because most

practical machine learning systems utilise data that is scraped, or curated by another

party. For the former case, we can craft malicious data-points, and upload them

online, waiting for someone to scrap it off and train their networks on it [38]. For

the latter case, the opportunity to inject malicious data-points into the dataset is

more straightforward. Unfortunately, we might not always be able to refrain from

using data from untrusted sources. Studying these attacks has the end-goal that we

could eventually device training schemes that produce classifiers that are robust to

these poisoning attacks.



CHAPTER 2. BACKGROUND 24

The objective of this thesis is to study how label-flipping attacks can be crafted

to maximise the adversarial error of networks trained on poisoned data. From this

point onward, points in the dataset that we mislabel, will be referred to as poisons,

flipped points, or simply as mislabeled points.

Dataset poisoning attacks are mostly model-agnostic, i.e., they do not assume

much information about the victim’s model. If a model has to be used to craft the

attack, then any architecture, or family of architectures is used in the hope that the

attack generalises.



Chapter 3

Is Lipschitzness always beneficial

for robustness?

Sanyal et al. [29] showed a theoretical result regarding uniform label noise, stated

above in section 2.5. The result signifies that when uniform label noise is injected

into the dataset, if there are lp balls of high probability mass with radius ρ in the data

distribution, then with large enough number of samples, the adversarial risk (attack

radius and norm being 2ρ and p respectively) will be high with high probability. In

order to bound the adversarial risk, the worst case had to be assumed, where the

classifier fits the dataset such that it gets the wrong answer only at the mislabeled

points, and the right answer for every other input. This classifier will have the

lowest possible natural risk. Neural networks are practically smooth, and do not fit

mislabeled points discontinuously. Each mislabeled training point will hence have a

region around it, where the network produces the wrong answer. This is illustrated

in fig. 3.1.

Hein and Andriushchenko [12] proved that Lipschitzness guarantees robustness.

But when label noise is present in the training data, Lipschitzness might hurt adver-

sarial accuracy. In this chapter, we develop results with Lipschitzness assumptions

on the classifier, when label noise is present. The result is classifier agnostic, as

25



CHAPTER 3. IS LIPSCHITZNESS ALWAYS BENEFICIAL FOR ROBUSTNESS?26

Figure 3.1: The figure on the left shows a classifier learning mislabaled points as
a dictionary, discontinuously. The figure on the right shows a classifier that is
smooth around each training point. The dotted black circles indicate the smoothness
guarantee. The radius of these circles is the distance that the input has to be changed
by, in l2 norm, for the classifier to change its output. The red dotted lines enclose
regions which are adversarially vulnerable to being misclassified from “green” to
“red”, under an l2-norm attack regime of certain radius ρ. ρ is the margin between
solid red regions and dotted red lines in the above figure.

long as the Lipschitzness assumption is true for that classifier. This is followed by

an example which shows k-nearest neighbour classifiers with decreasing smoothness

having increasing adversarial accuracies.

A function f : X → Y is κ-Lipschitz if there exists a constant κ s.t. ∀x1,x2 ∈ X,

‖f(x1)− f(x2)‖q
‖x1 − x2‖p

≤ κ

for some norms p, q.

If the classifier under study is known to be Lipschitz continuous, we can arrive

at the same bounds as Sanyal et al. [29] for a weaker adversary, i.e., we require a

smaller attack-radius to get the same lower bound on the adversarial risk.

Improved bound with Lipschitzness Assumptions

Theorem 2. Let C : Rd → ∆|Ω| be a probabilistic classifier and Chard(x) = arg max
x∈Ω

C(x).

Let P : Rd → R≥0 be the data distribution, and c : Rd → Ω be the ground truth la-

beling function. Ω is the set of classes. If there exist constants c1 ≥ c2 > 0, ρ > 0



CHAPTER 3. IS LIPSCHITZNESS ALWAYS BENEFICIAL FOR ROBUSTNESS?27

and a finite set ζ ⊂ Rd, such that

1. Px∼P

[
x ∈

⋃
s∈ζ
Bpρ(s)

]
≥ c1

2. ∀s ∈ ζ, Px∼P [x ∈ Bpρ(s)] ≥ c2
|ζ|

3. ∀s ∈ ζ, ∀u,v ∈ Bpρ(s), c(u) = c(v)

where Bpρ(x) is a ρ-radius lp ball around x. Let S = {(xi, yi)}ni=1 be a training

set, obtained by taking n i.i.d. samples from P, and labeling each sample xi with

yi = c(xi) with probability η, or any class yi ∈ Ω \ {c(xi)} with probability 1− η.

If C is such that

1. Chard has 100% training accuracy on S.

2. C has a margin 1 of χ on the training set points.

3. C is locally Lipschitz, such that ∀u,v ∈ Rd,

‖C(u)− C(v)‖1

‖u− v‖p
≤ κ

Then, if n ≥ |ζ|
ηc2

log(|ζ|/δ), with at least 1 − δ probability, R2ρ−τ
Adv (C) ≥ c1 where

τ = χ
κ

.

Proof. Consider some x ∈ ζ, s.t. ∃(x′, y) ∈ S, x′ ∈ Bpρ(x), y 6= c(x′), i.e., there

exists a training point x′ in S inside the lp ball around x which has been mislabeled.

The classifier would have memorised this point. We need to find out the attack

radius ρ required to render every point inside Bpρ(x) vulnerable. The worst case

is when this point x′ lies on the surface of Bpρ(x) since this is the case where the

attack radius required is going to be the largest. Now, if the classifier memorises

a mislabeled training point x′ with margin χ, it cannot instantaneously change its

output to the correct label as we move away from x′. There is going to be a region

1The margin here refers to the difference between the highest and second highest class-
probabilities in the classifier’s output, for a given input.



CHAPTER 3. IS LIPSCHITZNESS ALWAYS BENEFICIAL FOR ROBUSTNESS?28

of radius at least τ around x′ where the classifier produces the same wrong label.

This means in the worst case, when x′ lies on the surface of Bpρ(x), we will require

an attack radius of 2ρ − τ for all points in Bpρ(x) to be vulnerable. Let x̂ be the

point closest to x′ in lp distance such that C(x′) 6= C(x̂). Since C has a margin of χ,

τ ≥ ‖C(x̂)− C(x′)‖1

κ
≥ χ

κ

If there is one mislabeled point placed inside each lp ball around every point in ζ,

then R2ρ−χ
κ

Adv ≥ c1, since all of the probability mass inside every lp ball considered

contributes to the adversarial risk.

We will now lower bound the probability that there is one mislabeled point placed

inside each lp ball of radius ρ around every point in ζ.

P
[ ∧

s∈ζ

∃s′ ∈ Bpρ(s), (s′, y) ∈ S for some y s.t. y 6= c(s′)

]
= 1− P

[ ∨
s∈ζ

@s′ ∈ Bpρ(s), (s′, y) ∈ S for some y s.t. y 6= c(s′)

]
Using the union bound,

≥ 1− |ζ|P
[
for a particular s ∈ ζ, @s′ ∈ Bpρ(s), (s′, y) ∈ S for some y s.t. y 6= c(s′)

]
= 1− |ζ|

(
1− η c2

|ζ|

)n
≥ 1− |ζ|e−n.η

c2
|ζ| ≥ 1− δ

n ≥ |ζ|
ηc2

log
( |ζ|
δ

)
samples suffice for this. This completes the proof.

The above theorem shows that if there are regions of very high probability mass

in the data distribution, and there is uniform label noise at some rate, then a κ-

Lipschitz classifier that fits 100% of the training data with some threshold confidence

will have high adversarial error with high probability. This lower bound on the

adversarial risk, and probability is attained for a weaker attacker (i.e., smaller attack

radius) when the classifier is more Lipschitz (i.e., lower κ).



CHAPTER 3. IS LIPSCHITZNESS ALWAYS BENEFICIAL FOR ROBUSTNESS?29

Figure 3.2: A visualisation of the decision boundary learnt by the soft k-NN classi-
fiers, for increasing k. The colors in the figure show hard outputs, showing the class
given the highest probability. Classifiers with high k are less smooth. Increasing k
pushes the decision boundaries towards the “dictionary” case.

This model-agnostic result can also be viewed in another direction. If the classi-

fier has a lower κ, then we can have a larger radius for the lp balls around points in ζ,

leaving room for larger c1 and c2, increasing the lower bounds on the probability and

the adversarial risk. This can be done while keeping the strength of the adversary

constant (i.e., the attack radius).

The following is one example of a case where Lipschitzness hurts the adversarial

accuracy of the classifier.

Intuition for Lipschitzness harming robustness

As an example, let us take a two dimensional dataset. This dataset has 32 training

points. 15 points are sampled from the Gaussian N ([−1,−1]T , 0.4I2) and 15 points

from N ([1, 1]T , 0.4I2). The ground truth function used to produce the labels, is

given by c([ux, uy]) = Jux + uy ≥ 0K. Two mislabaled points are placed at [−1,−1]

and [1, 1] each. We will call this training set S.

In order to have control over the Lipschitzness, and also to ensure that all of the

training points are fit, we conduct these experiments with soft k-nearest neighbour

classifiers. To classify an input x, a soft k-nearest neighbour classifier considers the

k nearest neighbours from the training set. For these k neighbours, the inverse of the

l2 distance to x are considered, and instead of a majority vote, this inverse metric



CHAPTER 3. IS LIPSCHITZNESS ALWAYS BENEFICIAL FOR ROBUSTNESS?30

(a) Natural and Adversarial
Accuracies of Ck-NN

(b) Estimated lower bound on
Lipschitzness (κ) of the classifiers

Figure 3.3: Smoother soft k-nearest neighbour classifiers are less adversarially ro-
bust.

is considered to be the weight given to each neighbour. The classifier produces a

distribution over classes by using these computed class-wise weights as logits, which

are softmax-normalised. For ease of notation, we fix the classifier’s output to be the

probability of the input belonging to class “0”. This classifier is Lipschitz

∀x1,x2,
|Ck-NN(x1)− Ck-NN(x2)|

‖x1 − x2‖∞
≤ κ

We vary k while lower-bounding the Lipschitzness (κ), and evaluating the ad-

versarial and natural accuracies of the resultant classifiers.

Figure 3.2 shows a visualisation of the classifiers’ output, for k = 1, 3, 5. Classi-

fiers with lower values k are smoother. Figure 3.3 shows the natural and adversarial

accuracies of these classifiers, as k is varied. The adversarial accuracies were esti-

mated against an l∞-PGD adversary with attack radius 0.2.



Chapter 4

Crafting Label Noise

The initial experiments we tried were based on the idea that placing mislabeled

points in areas where high probability mass is present in the vicinity might be opti-

mal to hurt the robustness of classifiers trained on the data. These experiments are

discussed in Chapter 6. This idea does not work. In this chapter, we systematically

study the effect of mislabeled points on the adversarial accuracy of DNNs, for a

toy dataset. Studying the problem on a toy dataset provides great control since we

are aware of the data distribution, and we can place mislabeled points rather than

flipping points from sampled training sets. Guided by these toy experiments, we will

then develop an adversarial path based analysis 4.3, which we will test on MNIST.

4.1 Toy distribution

To develop a better understanding of how neural networks fit mislabeled points, what

exactly is the cause of the huge drop in their adversarial accuracy when random label

noise is introduced into the dataset, and also why the highest probability density

regions are not the best to label-flip, we carry out some controlled experiments in

this section. Some of the following experiments utilise a toy dataset which consists of

two classes, with the instance space being Rd. To create the training set, n samples

are generated from the gaussian mixture

31



CHAPTER 4. CRAFTING LABEL NOISE 32

Ptoy(x) =
1

2
N (x| − µ1d, σ

2Id) +
1

2
N (x|µ1d, σ

2Id)

and labelled with the ground truth labeling function

ctoy(x) = JxT · 1d ≥ 0K

to create a dataset, where N (· | m,Σ) refers to the normal distribution with mean

m and covariance matrix Σ. This dataset is denoted as Dtoy. From this, we create a

poisoned dataset Drtoy where we place b mislabeled points for each class, at r distance

(l2) from the means of the 2 classes, (uniformly sampled at r distance). We drop

many of these details from the notation of Dtoy for clarity. We are placing mislabeled

points, and not flipping selected training points after the sampling process. This is

to have greater control over toy experiments. Figure 4.1 shows samples from Dtoy

with µ = 10, σ2 = 1, d = 2.

Figure 4.1: Toy data distribution with d = 2, µ = 10, σ2 = 1, d = 2

4.1.1 Classes far away from the decision boundary

Here, we aim to study the vulnerability of networks when µ � σ. The decision

boundary given by xT · 1d = 0 is far away from where the points are located. For

now, this notion of being far away is not well defined. But what we want to study is

the effect on the adversarial vulnerability of networks when poisons are very far away

from the boundary that these networks would have learnt otherwise in the absence of



CHAPTER 4. CRAFTING LABEL NOISE 33

(a) Poisons have labels set to the opposite
class

(b) Poisons have labels set to a third, new
class

Figure 4.2: is the test accuracy is the adversarial accuracy. r represents the
distance from the means of the gaussians where mislabeled points (poisons) were
placed. Setting wrong labels to a third class produces a curve very similar to the
case where labels were set to the opposite class for poisons. Multiple models were
trained, and randomisation was also done on the poisons placed for each run, which
is what the confidence intervals and mean curves are representative of.

poisons. This decision boundary that the classifier would have learnt in the absence

of mislabeled points will be refered to as the natural boundary. We attempt to keep

the boundary far away so that the networks do not stretch the natural boundary

in order to accommodate poisons. The networks should be learning pockets around

mislabeled points where they give the wrong answer. It is a valid question as to how

we might know whether the effect we want to avoid is actually not happening, and

that networks are learning pockets around mislabeled points. For this, we resort to

an experimental trick: mislabeling points to a third, new class that is not present

in the dataset. Since this class is not present in the original training set, when

the network memorises mislabeled points, it cannot stretch the natural decision

boundary to do so. The training setup for this case, with the new class introduced,

is the exact same with one extra logit added to the output layer of the network.

The adversarial accuracy of models trained in this experiment were evaluated

using an l∞ PGD adversary, with an attack radius of 0.2.

Figure 4.2 shows the results of two runs (d = 16, b = 2, σ2 = 1, µ = 10) with

64 points in the training set (including the mislabeled points). We fit networks to



CHAPTER 4. CRAFTING LABEL NOISE 34

different toy datasets while varying r. Reiterating, r is the distance from the means

from which the mislabeled points are placed (in this case, 2 mislabeled points per

class). The experimental details and results are summarised as follows:

1. Two data points with label 0 were placed near µ1d and two data points labelled

with 1 were placed near −µ1d. Classifiers were then trained to overfit to

this dataset (achieve 100% training accuracy). Fig 4.2 shows that adversarial

accuracy first decreases and then increases, as poisons are placed farther away

from the means of the Gaussians. This supports the conjecture that placing

mislabeled points in the highest probability density regions is not optimal to

hurt the adversarial accuracy.

2. The above experiment was repeated but the label-flipping was done to a third

new class. This was to see whether the drop in adversarial accuracy primarily

stems from learning more complex decision boundaries in the first experiment

where the poisons were labeled with the opposite class, or the vulnerability is

equally bad when the classifier has to learn new regions with the third class

as the label. The plot obtained in this case is very similar to the previous

experiment, indicating that regions memorised to be of the opposite class is

not worse for the adversarial accuracy, in comparison to the case where the

network is forced to memorise new regions.

For the exact same toy setup, when the dimensionality d is increased, the adver-

sarial accuracy quickly shoots up to one and the curve becomes flatter (as shown in

the next section). Since standard datasets are generally high dimensional, the next

section involves 64 dimensional toy data. It is already clear that placing mislabeled

points with the idea of having high probability mass in the vicinity is sub-optimal,

since poisons placed at the means of the Gaussians did not optimally hurt the ro-

bustness of the classifiers.



CHAPTER 4. CRAFTING LABEL NOISE 35

4.1.2 Classes close to the decision boundary

Here, we carry out further experiments on the toy dataset, this time with higher

dimensionality (64 dimensions), and vary µ and r, to observe how the adversarial

accuracy of the trained network changes. We are interested in observing the effects

when mislabeled points are placed close to the decision boundary as well. The

increase in dimensionality is because we need to ensure that the effects we see are

not merely artefacts of low dimensionality (the results of the previous section are

such artefacts, since for the same strength of the adversary, the accuracy turns out

to be 100% for d = 64).

We vary µ and r, fit networks for each case. We carry out these experiments

for d = 64, with a 4 layer fully connected, ReLU activated network. After creating

the poisoned dataset, we fit networks with the stated architecture to these poisoned

datasets, and evaluate their adversarial as well as natural accuracies. The results

clearly indicate that placing mislabeled poisons near the mean is the worst for having

high adversarial error. There is high variance in the adversarial accuracy of models

given vanilla training, hence we run multiple seeds for each setup.

For the case where the means were very far apart, the adversarial accuracy was

the highest, and the poisons had almost no effect. Closer the class-means get, lower

the adversarial accuracy.

Differences in the adversarial accuracies, between the cases where we flip to the

other class, and when we flip to a 3rd class, are larger when the means are closer.

We also made another change to the setup, like in the previous section, and

repeated the above experiments. The training setup is the exact same, except that

this time, we mislabel points to a third class, which is not present in the dataset.

The network is given one extra unit in its output layer, and all hypterparameters

are preserved. All of the relative trends we observed above were observed again, but

this time the networks had higher adversarial accuracies for cases where mislabeling

was done to a third class.



CHAPTER 4. CRAFTING LABEL NOISE 36

Another point to note is that while the natural accuracies of the networks also

showed the same trends as the adversarial accuracies, these are on a very different

scale, with all values being upwards the 99% accuracy mark.

(a) Adversarial Accuracies

(b) Natural Accuracies

Figure 4.3: d = 64, b = 2, σ2 = 1.0; 2 mislabeled points were placed per class. As
before, randomisation is over training multiple models with different initialisations,
and placing poisons randomly sampled at a given distance r from the means.

We can derive the following conclusions from the above experiments:

1. Adversarial accuracy is hurt more by mislabeling to a class whose decision

boundary lies close. This is indicated by the fact that when we flipped the

label to a new, 3rd class, the adversarial accuracy was better than when we

flipped the label to the other class.



CHAPTER 4. CRAFTING LABEL NOISE 37

2. Placing the mislabeled points at the highest probability density regions is

ineffective when our intention is to increase the adversarial error. In fact, in

many of the above runs, the networks barely fit the mislabeled points placed

at these high density regions, within a few epochs. The number of epochs for

the entire spectrum had to be increased for a fair comparison. This is further

motivation to not place mislabeled points in such regions, since we cannot

expect the victims’ models to memorise these points. They can simply use

early stopping, and their models will be as good in adversarial accuracy as

models that would have been trained on clean datasets.

3. When the class-means are closer to each other, the adversarial error is higher.

This indicates that the most adversarially vulnerable networks simply do not

memorise a closed region around mislabeled points, rather they tweak the

decision boundary to include the mislabeled points, rendering large amounts

of probability mass vulnerable “on the way”. Figure 4.4 shows a visualisation

of this. Further experiments add strong evidence in support of this claim.

Till this point in this chapter, we do not have enough insights to exactly under-

stand what might be an optimal strategy to flip labels.

4.2 Flipping to a new class in MNIST

Similar to the approach we took for toy experiments where we flipped labels to a

third class, here we attempt to study classifiers which memorise the poisoned MNIST

dataset. We first randomly select 10 points per class from the MNIST dataset which

will be label-flipped, and then we fit 2 different classifiers: one classifier is fit with

the mislabled points set to the next class in the dataset, and the other classifier,

with one extra logit added in its output layer, is fit with the mislabeled points set to

an 11th class, which is not present in the dataset. Adversarial accuracy evaluation

is untargeted for this experiment.



CHAPTER 4. CRAFTING LABEL NOISE 38

Poisoning Experiment Adversarial Accuracy(%)

Mislabeling to next class 36.46± 4.42
Mislabeling to an 11th class 41.51± 4.26

Table 4.1: Adversarial Accuracies of networks when poisoning is done to a new
class compared to the case when poisoning is done to the next class cyclically. The
accuracy was evaluated against an l∞ PGD adversary with an attack radius of 0.1.
Randomisation in the above results is over model initialisation. For each run, the
same points in MNIST are label-flipped.

Table 4.1 shows the results of this experiment. The network trained with points

flipped to the 11th class had a much higher adversarial accuracy compared to the

other network. This indicates that the poor adversarial accuracy of models trained

with random label noise is probably because of the mislabeled points stretching

the decision boundary, and rendering large amounts of probability mass vulnerable

on the way. We ran the above experiment with other randomly selected points to

label-flip as well, and the results show the same trend.

4.3 Analysis using adversarial paths

(a) Network learning a
“pocket” around a
mislabeled point

(b) Network tweaking the
decision boundary to

“accommodate” a mislabaled
point

Figure 4.4: The above figure shows two different ways in which a classifier could
memorise a mislabeled point. If the decision boundary is tweaked to accommodate
a mislabeled point, it could lead to much higher adversarial errors, compared to the
other case.



CHAPTER 4. CRAFTING LABEL NOISE 39

The following section descibes a series of experiments, which reveal why the

random strategy performs surprisingly well in searching for poisons, and also sheds

light on the nature of training points which when mislabeled, cause a massive drop

in the adversarial accuracy of the model.

The first experiment shows the result for a binary classification problem, with the

MNIST dataset’s classes 0 and 1 only. The other case shows the same experiment

done on the full MNIST dataset. The experiments also reveal why we will always

get good enough results (i.e., high adversarial error) while randomly selecting points

to label-flip, because it turns out that points responsible for huge drop in adversarial

accuracy when mislabeled are very large in number.

4.3.1 Finding a path from a point to the boundary

A requirement to the experiments that follow is a procedure to find a path from

a data point to the decision boundary of a given classifier. For instance, if we are

given a classifier trained on the MNIST dataset, and are given a data-point x (i.e.,

some handwritten digit), then we need to find a path (the shortest path ideally)

from this datapoint to the decision boundary. We might also have a constraint:

finding a path to the decision boundary of the given data point’s class, and a target

class. Further, this path is distance-wise unconstrained, and we are not concerning

ourselves with finding such a path that completely lies inside a certain region, such

as an lp ball of specific radius around the input x. We will carry out an unbounded

gradient descent attack, and record all the adversarial examples we get on the way.

For a small step size ε, we make gradient updates on the input that is plugged into

a model, by backpropagating gradients from the loss, all over to the inputs. During

these gradient updates, unlike Projected Gradient Descent, we do not project the

updated input back into an lp ball of radius ρ around the original input. After every

update, we record the updated input. This procedure terminates when the output

of the classifier is flipped, or when some maximum number of steps have already



CHAPTER 4. CRAFTING LABEL NOISE 40

been taken. We will call this procedure untargeted-unbounded-gradient-descent.

When we have several classes, it makes sense to study the effect of poisons

by evaluating the adversarial accuracy of the model using targeted attacks from

the original class of the poisons, to the class the poisons were mislabeled to. For

instance, if some points in class 9 of the MNIST dataset were mislabeled to class

0, then it makes sense to evaluate the the impact of these poisons by estimating

the robustness of the resultant model using targeted adversarial attacks from class

9 to class 0. We hence, find out paths in multi-class settings by recording the path

from a given data point to a target decision boundary. We will call this procedure

targeted-unbounded-gradient-ascent 8.

We will refer to the paths traced out by the above algorithms as adversarial

paths.

Interestingly, when we found out the adversarial paths for some of the below

experiments, we came across label noise already present in MNIST. This is illustrated

in figure 4.5. We selected points closest to and farthest from the decision boundary,

and plotted them out. Many of the points closest to the decision boundary already

have label noise. Adversarial paths were found out from each class to the next, in a

targeted manner for this analysis.

4.3.2 Using adversarial paths to analyse poisons

For a given dataset, we first train a classifier on the clean dataset, without placing

any mislabeled poisons. Let us call this the clean classifier. We then iterate over

the training set, and find out adversarial paths for each point.

The hypothesis is that if points are too close to the decision boundary, then

it is not very optimal to mislabel them (optimal in the sense that the adversarial

error of a model trained on the dataset with mislabeled points has to be maximal),

since the decision boundary is going to slightly be modified to accommodate the

poison. If it is too far away, then it might be the case that the classifier resorts to



CHAPTER 4. CRAFTING LABEL NOISE 41

(a) 5 points per class closest to the
boundary of the next class

(b) 5 points per class farthest from
the boundary of the next class

Figure 4.5: After finding out the adversarial paths from each training point to the
decision boundary of a model trained on MNIST, we visualized some points closest
to and farthest from the decision boundary. Examples pertaining to each class have
been put on different rows: 0 to 9 from top to bottom. Note that the path to the
next class was found by untargeted-unbounded-gradient-ascent, which is why label
noise is such that some of the 0s look like 1s, 1s like 2s, and so on. Constratingly, the
images on the right are far away from the boundary, again evaluated in a targeted
manner. These images seem very crisp.



CHAPTER 4. CRAFTING LABEL NOISE 42

memorising the poison using an alternative pocket, rather than modify the natural

decision boundary, again producing classifiers that have low adversarial error. It

might be interesting to see the outcome for the entire spectrum.

Algorithm 2 Targeted Unbounded Gradient Ascent

1: procedure Adversarial-Path(C,x, t,m, ε) . m: max iterations, ε: step size
2: Path ← [x]
3: Output ← C(x)
4: while len(Path) ≤ m and t 6= Output do
5: x = Targeted-FGSM(C,x, t, ε)
6: Path.append(x)
7: Output ← C(x)

8: return Path

4.3.3 Adversarial Path Experiments

0-1 MNIST

We only consider a 2-class dataset, composed of the classes “0” and “1”, from

MNIST. A binary classifier is trained on this dataset. We then find out the adver-

sarial paths for each point in the training set. Figure 4.6 shows an illustration of

the distribution of the length of these paths over the training set points, per class.

Next, we divide the training set points into various disjoint buckets, each bucket

holding points from a different range of the length of the adversarial path. Essen-

tially, the x-axis of 4.6 is divided into ranges, and points falling into each range are

put into the bucket for that range.

We train several models for each bucket, each with randomly selected poisons

from that bucket. Figure 4.6 illustrates the results. Closer the mislabeled points

are to the original decision boundary, less the fall in the adversarial accuracy of

the model trained after mislabeling that point. As we go farther from the decision

boundary, the poisons have a greater impact. The next experiment will shed more

light on placing poisons even farther from the boundary (in the full MNIST case,

where some classes were observed to be even farther from the decision boundary),



CHAPTER 4. CRAFTING LABEL NOISE 43

(a) Distribution of the length of ad-
versarial paths, over each class of 0-1
MNIST.

(b) Adversarial accuracy of network
trained on a poisoned 0-1 MNIST
dataset, with poisons selected at in-
creasing distances from the decision
boundary.

Figure 4.6: (a) shows the distribution over the number of gradient ascent updates
it took for the classifier to flip its output, for 0-1 MNIST, for the points in the
training set. The y-axis indicates the number of points in the training set. The
step size used for the above was 0.01, on [0, 1] normalized input images. (b) The x
axis only denotes an ordinal value: higher values represent buckets holding points
for which the adversarial paths were lengthier. The points were segregated into
different buckets for (b), each bucket having points at a certain distance range from
the boundary. The test accuracy of all of the above models are greater than 99%.

and the impact of the poisons starts wearing away.

MNIST

We now consider the full MNIST dataset, and any points selected to be mislabeled,

will be cyclically set to the next class in [0..9]. We first, like we did previously, find

out the adversarial paths for each training point. But since we are flipping the label

to the next class, we will find out adversarial paths for each point in a targeted

manner, with the next class being the target.

Figure 4.7 shows the distribution of the number of gradient descent steps each

adversarial path took, i.e. the length of the targeted-adversarial paths for each point

in the training set. First of all, we observe that we cannot have universal buckets

for all classes, since some classes are much farther from the decision boundary than

others. For instance, points in class 1 are much closer to the boundary than points in



CHAPTER 4. CRAFTING LABEL NOISE 44

class 9. So it is not possible to do experiments where we flip points in the same range

for all classes. There is a solution however, which is that we only place mislabeled

poisons for one class of the dataset, flipping the label cyclically to the next class.

The adversarial accuracy of the resultant network will only be evaluated on targeted

attacks from that selected class, to the next one (the class the labels were flipped

to).

The results of this experiment show that the closer the mislabeled points are to

the decision boundary, lower their impact. As we mislabel points farther from the

boundary, the impact increases, until a certain point. After a point, selecting points

farther from the decision boundary worsens the impact. The curves are as shown in

figure 4.8, and the 3 graphs shown are for classes 1, 4, and 9 flipped to 2, 5, and 0

respectively. These classes were chosen since they are at increasing distances from

the decision boundary. Points in class 1 are very close, and points in class 9 are very

far. So they capture cases at different regions in the spectrum.

Also, the minima observed for all the curves is where most of the training set

points lie, which explains why the random strategy manages to cause a huge fall in

the adversarial accuracy. Randomly selecting points to flip still has a high chance

of selecting these impactful points, since there are so many of them.

This provides a way to select points to flip, given a budget. We can fit a clean

model to the dataset, and find out adversarial paths for each point. The targeted or

untargeted nature of the adversarial path will depend on the kind of vulnerabity we

want in the victim’s model. For instance, if we decide to flip a class A to a class B,

then the adversarial paths should be targeted from A to B, after which the victim’s

model will be vulnerable to targeted attacks from class A to class B. We can then

perform an analysis over the different adversarial path lengths, fitting models for

each case, which will guide towards refining our search space.



CHAPTER 4. CRAFTING LABEL NOISE 45

Figure 4.7: Distribution over the number of gradient ascent updates it took for the
classifier to flip its output, for the full MNIST dataset, for the points in the training
set. The y-axis indicates the number of points in the training set. The step size used
for the above was 0.01, on [0, 1] normalized input images. Note that for training
points belonging to class “1”, it takes not more than 10 steps in these adversarial
paths. This means that for an attack radius of ε = 0.1, almost the entire class
must be vulnerable, which is indeed the case. The adversarial accuracy of the model
trained on the clean dataset, on targeted attacks from 1 to 2 is almost 0.

Figure 4.8: Full MNIST dataset. The x axis only denotes an ordinal value: higher
values represents represents buckets holding points for which the adversarial paths
were lengthier. The orange line is a baseline showing the adversarial accuracy when
same number of points are randomly selected to poison. The 3 graphs shown are for
classes 1, 4, and 9 flipped to 2, 5, and 0 respectively. These classes are at increasing
distances from the decision boundary: points in class 1 are very close, and points
in class 9 are very far, class 4 being an intermediate case. The adversarial accuracy
evaluation for each case is done using targeted attacks from classes 1, 4, and 9 to 2,
5, 0 respectively to study the effects of poisons. 10 poisons were placed per class for
these runs. The test accuracy of all of the networks evaluated in the above diagram
is more than 99%.



Chapter 5

Future Work: A Meta-Learning

Approach

The problem of crafting label noise can be framed as a multi-level optimisation

problem. While meta-learning is a broadly used term, we will be referring to the

gradient-based meta-learning setup [7, 23, 8]. Under this setup, we have an inner

objective, Lin minimised in a loop, and an outer objective Lout, minimised in an

outer-loop, nesting the inner objective inside of it. There are certain parameters

φ utilised by the training setup of the inner loop, which the outer loop has con-

trol over, and parameters θ which the inner loop has control over. The aim is to

compute gradients ∇φLout to make gradient-descent updates to φ. The way this

gradient computation is done, is by unfolding training steps in the inner loop, and

backpropagating through the gradient updates made in this inner loop.

For simplicity, let us assume we have to solve a binary classification problem.

There are only 2 classes, and we are given a dataset with n points sampled from

P , and labeled with the ground truth labeling function c to produce a dataset

Sclean = {(xi, c(xi))}ni=1.

We are to find one point in this dataset to label-flip, i.e. some i ∈ {1..n}. This

point should be such that if the given point’s label is flipped to the other class, the

46



CHAPTER 5. FUTURE WORK: A META-LEARNING APPROACH 47

adversarial accuracy of a classifier trained on this modified, or poisoned dataset is

as low as possible.

The following are different agents optimising over different variables in the prob-

lem we are concerned with:

1. The victim optimises over the model parameters, attempting to minimise the

training loss

2. The input adversary, as we will call it, optimises over constrained perturbations

to the input, attempting to maximise the training loss

3. The poisoning adversary, as we will call it, optimises over which points to

carry out a label change, given a budget constraint over the number of labels

it can modify, and attempts to minimise the adversarial accuracy of the model

Note that in each case, the agents are concerned with maximising or minimising

accuracy, but the loss is the only metric under control. An appropriate loss, when

minimised or maximised, can be expected to increase/decrease the accuracy of the

model.

Let the size of the training set be n. Let the label noise the poisoning adversary

adds to the training set be represented as ∆y ∈ {0, 1}n such that
∑

i ∆yi = 1, y

being the vector of labels in the dataset, ith label being yi, X being a matrix storing

the training points as its row vectors, with the ith data point being xi. Let H be the

hypothesis class, i.e. the set of functions the victim is optimising over. The problem

can then be framed as:

∆y∗ = arg max
∆y is one-hot

Rρ
Adv

(
arg min
C∈H

L(C, X,y ⊕∆y)

)
(5.1)

where ⊕ is the “xor” operation, i.e. allows label flipping to happen wherever ∆y is



CHAPTER 5. FUTURE WORK: A META-LEARNING APPROACH 48

one-hot at. This can be practically implemented as

∆y∗ = arg max
∆y is one-hot

max
X′∈Bpρ(X)

L
(

arg min
C∈H

L(C, X,y ⊕∆y), X ′,y

)
(5.2)

where Bpρ(X) is defined as the set of all matrices M such that ∀i ∈ {1..n}, mi ∈

Bpρ(xi).

While implementing, we can have a learnable real valued vector h with dimen-

sionality n where n is the training set size. Let us call this the flip logit vector. We

derive a one-hot vector over the training set using h, by using the Gumbel-Softmax

trick used to create a “smooth” function that behaves like argmax, but that allows

gradients to backpropagate [21]. Given a logit vector h, the Gumbel-Softmax trick

produces the almost one-hot vector f such that:

fi =
exp((hi + gi)/τ)∑n
j=1 exp((hj + gj)/τ)

where τ > 0 is a hyperparameter called the temperature and g is an n-dimensional

vector such that each entry of it, gi is sampled from the Gumbel Distribution i.i.d.

Now that we have f , such that we can backpropagate gradients through it, we

show the model we are training the modified label vector 1

y′ = y� (1− f) + (1− y)� f

Now we make gradient updates on the network we have, simulating training with

these new labels, and recording all operations we do, use the final network produced

by these updates to craft adversarial examples from the training set itself, and finally

compute the loss of this final model on the adversarial examples. This loss has to be

maximised. We backpropagate from this loss, and receive gradients for h through f ,

1We do not need the exact same model that the victim might be using. Most attacks in literature
which make use of models to craft the attack assume a model and hope that the attack generalizes,
which works very well practically



CHAPTER 5. FUTURE WORK: A META-LEARNING APPROACH 49

and we do a gradient ascent on h.

We could not find a computationally feasible way to implement this. Practical

datasets have thousands of training examples per class, and the inner loop of this

method involves multiple gradient descent steps. We will have to calculate and

backpropagate second order gradients through these steps. While doing this, we

need to also involve the entire training set in the update steps, so as to get gradients

back to each dimension of f , since we require exactly one dimension selected by f .

Having a sufficient number of network updates in the inner loop is also necessary to

simulate practical network training. Further, after the updates in the inner loop, we

also need to compute adversarial examples for each point in the training set, with

the final updated network, and the outer loop’s maximisation is done over these

adversarial examples. Figure 5.1 shows an example for a small dataset with just 2

batches of size 4.



CHAPTER 5. FUTURE WORK: A META-LEARNING APPROACH 50

Figure 5.1: An example of the multi-level optimisation case, where we have a small
dataset of 8 examples, and two gradient updates are made in the innermost loop,
with each batch update having 4 examples. The function get adversarial examples
() produces adversarial exapmles for a given network and inputs. Dotted lines
indicate that the operations are not to be recorded, and bold lines indicate that the
operations should be recorded, so that we can pass gradients through them during
the backward pass. � refers to elementwise multiplication.



Chapter 6

Early Unsuccessful Experiments

This chapter is a record of the unsuccessful experiments we tried in the beginning.

These were based on the idea that mislabeling points with high probability mass in

the vicinity might be optimal to increase the adversarial risk of classifiers trained

on the poisoned dataset.

6.1 Building graphs on training points

Sanyal et al. [29] theoretically gives bounds for the adversarial risk by reasoning

that if mislabeled points are placed at high density regions - regions where if the

classifier memorises the wrong label, will render a large amount of probability mass

in the vicinity of this mislabeled point vulnerable. This was the inspiration for the

algorithm we studied initially: flipping the labels of training points which come from

high probability density areas. For datasets like MNIST, there is no reliable way

to model the probability density function given training points, which is why we

attempt to resort to heuristics, based on various combinations of representations of

points with different ways of selecting points. This will be explained in detail in the

following paragraphs.

Definition 1. Given a set of points, S = {xi}mi=1, the Class-Graph of this set of

51



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 52

points Gp
γ(S) is defined as the undirected graph Gp

γ(S) = ({1..m}, Ep
γ(S)) where

Ep
γ(S) = {{i, j} | 0 < i < j ≤ m ∧ ‖xi − xj‖p ≤ γ}

Intuitively, a class-graph of a set of points is an undirected graph connecting

every two points closer than a threshold γ, under some norm p.

The algorithms are based on the following idea: For each class of the dataset, we

build class-graphs in some representation space. The degrees of various points are

now considered to be a heuristic for the probability density at each point. We then

use one of the two selection strategies outlined below to select vertices from class

graphs, which will then be label-flipped. When we refer to label-flipping, we simply

will change each label selected to be of the next class, cyclically. The adversarial

accuracy of the resultant model will then be evaluated in a targeted manner, by

carrying out targeted PGD attacks from each class to the next one.

Selection Algorithms

The following two algorithms are the selection algorithms we experimented with.

Each of them take in an undirected graph, and select a given number of vertices

from it. Let ∆ be the maximum degree in the given graph.

1. Algorithm 3: We simply select b nodes with the highest degrees.

2. Algorithm 4: A (∆ + 2)-approximation to the dominating set problem (∆ is

the largest degree in the input graph), for a budget number of vertices in the

dominating set. The approximation factor for this budget version follows from

the proof for the full dominating set problem. 1

1A proof can be found at http://ac.informatik.uni-freiburg.de/teaching/ss_12/

netalg/lectures/chapter7.pdf.

http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf
http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf


CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 53

Algorithm 3 Greedily Selecting vertices

1: procedure Greedy-Selection(G, b)
2: Degrees ← [degree(i) for i in V (G)]
3: Selected-Vertices ← Sort-By-Val({1..|V (G)|}, Val=Degrees)[-b:]
4: return Selected-Vertices

Algorithm 4 (log ∆ + 2)-approximation to the dominating set problem

1: procedure Smart-Greedy-Selection(G, b)
2: n← |V (G)|
3: S ← φ,D ← φ, U ← {1..n} . φ refers to the empty set
4: while b > 0 ∧ U 6= φ do
5: choose v ∈ arg max

x∈D∪U
|U ∩ ({x} ∪NG(x))| . NG(x) is the set of points in G

neighbouring to x
6: S ← S ∪ {v}
7: U ← U \ ({v} ∪N(v))
8: D ← D ∪ (U ∩ ({v} ∪NG(v)))
9: b← b− 1

10: return S

It is a valid question as to why we ran 2 different algorithms: one where only

high degree nodes are selected (greedy strategy), and one which is an approximate

solution to the modified dominating set problem discussed before. When we se-

lect only select high degree points, we might be rendering points from the same

neighbourhood vulnerable, which the second algorithm avoids.

6.1.1 Building graphs on input space

The first attempt was to build Class Graphs on each class of the MNIST dataset,

and for each class, pick vertices from the graph to flip labels. These class-graphs are

built on the normalised, flattened MNIST images. Each label that has to be flipped

is simply set to the next value cyclically.

The procedure we followed was as follows:

1. Produce Class Graphs for all classes on the MNIST dataset

2. Select b points to flip using one of the 2 selection algorithms

3. Change the labels of the selected points



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 54

4. Train networks on the poisoned datasets

5. Randomly select b points to flip, and train and evaluate the networks on them

to have a random baseline to compare with

As previously mentioned, the idea behind the above algorithms on the Class

Graphs is that we want to select points that can render as much amount of prob-

ability mass adversarially vulnerable as possible. Since we do not have a reliable

method of density estimation, we select points that have a large number of neigh-

bouring points, as a heuristic.

Surprisingly, the results showed that not only did the above strategies yield

networks that had adversarial errors comparable to the random strategy (i.e., they

are no better), rather, they were strictly inferior. Networks trained on poisoned

datasets modified using the above strategies are more robust than the ones trained on

the same dataset but with randomly selected labels to flip. The next few subsections

illustrate attempts to do the same in different subspaces which are more feature rich,

since it might very well be the case that looking at the proximity of points in the

input representation is sub-optimal for our purpose. One strong reason why this

might be the case is the inter-point distances of the points in practical datasets we

experimented with: MNIST. The distances between points is far, far more than the

perturbation budget ε.

6.1.2 Using Low Rank representations

Principal Component Analysis (PCA) is a popular dimensionality reduction method.

It aims to find dlow-rank orthogonal directions, given d dimensional data points, such

that the dataset has the highest variance along these dlow-rank directions. The dimen-

sionality reduction is then done by first recentering the data to have 0 mean, and

then projecting the data points onto each of the dlow-rank vectors, getting dlow-rank

dimensional representations for each of the points. These dlow-rank directions are



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 55

obtained by finding out the eigenvectors corresponding to the dlow-rank highest eigen-

values of the covariance matrix of the data distribution. In practice, the mean and

the covariance matrix are estimated from the given data points.

We calculated the low-rank representations of points in the MNIST training set,

and built Class-Graphs on these low-rank representations. This experiment did not

yield any conclusions. For various values of γ it performed better and in certain

cases worse than the random baseline, which is not conclusive.

6.1.3 Using the feature representations of a trained network

The next attempt was to consider the representations learnt by a trained network

on the dataset. Networks are able to extract rich features, that heavily correlate

with the label. It might be the case that selecting points that are closer in feature

space might perform well. This attempt too, did not yield anything.

This was rather a bit short sighted, since we later realised, and experimentally

verified as well, that networks memorise the mislabeled points by learning very

different feature representations, compared to other points in the vicinity, which

have a different (correct) label.

6.1.4 Using the feature representations of a trained network

as well as input space

The final experiment in this direction was to select points that are high-degree both

in the input as well as feature space. We select 2b number of points from input

as well as feature space. We then select b points from the intersection of the set

of points selected by both the algorithms. The above also did not yield definitive

results.



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 56

6.2 Colouring trick

If we could fit one model with each training set point flipped, then we could iterate

over all such models and check which mislabelled points cause the largest drop in

adversarial accuracy. In this experiment, we build graphs over the training set points

of MNIST which belong to class 5, having one edge between points closer than γ in

l∞ distance. We then solve an extension of the minimum coloring problem on this

graph, where even two adjacent nodes cannot be assigned the same color, and so

can’t second neighbours. We only need an approximate solution, which ensures that

neighbours or second neighbours are not assigned the same color. The idea is to fit

a network N mapping these points to the colors. After N memorises the colors,

we iterate over every point in class 5, attempting to assign a score to each point.

The score for a point x is determined by the number of its neighbours which were

rendered vulnerable to x, which is estimated by the number of x’s neighbours such

that we can carry out a targeted attack from them, and flip the network’s output to

the color assigned to x.

The idea behind the above experiment is that the network might be memorizing

similar regions of the wrong label for mislabelled points in the poisoned dataset

setup as different coloured regions when we assign colors to the training points.

Further, the reason why we ensure that neighbours and second neighbours are not

assigned the same color is that when we start out with a training point x, with an

assigned color c(x), we need to carry out a targeted attack from this point to the

color of one of its neighbours, hence if 2 neighbours share the same color, we cannot

be sure which region (pertaining to which of these neighbours) the attack settled at.

Next, we flip the labels of the training points in class 5 with the largest scores

assigned by the above algorithm. The resulting network’s adversarial accuracy is

estimated on class 5 only, in a targeted fashion. Precisely, we utilise attacks that

flip the network’s output from 5 to 6, precisely.

The above experiment was compared to the random strategy, where randomly



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 57

Figure 6.1: Idea behind using different color labels for each point in a specific class,
and getting a network to memorise the assigned labels. The black lines show the
decision boundaries learnt for the different colors, and red boxes show the points
which are vulnerable because of a boundary passing through the l∞ balls around
those points.

chosen points from class 5 (same fraction of points mislabeled, for comparison).

The random strategy still performed better, compared to points selected by the above

algorithm. This hints towards the idea that there are points, and a large number

of them, such that the network not only learns a wrong region around them, but

probably learns stretched out, far reaching regions from the decision boundary that it

would have learnt on a clean dataset.



Conclusion

The ideas discussed in this thesis uncover properties of neural networks trained on

data with label noise. We establish that placing mislabeled points at the highest

probability density regions is sub-optimal to hurt the adversarial accuracy of models.

We also provide a way to select training points to label flip, by analysing their

adversarial paths for models trained on clean data.

While we extend and also provide a new bound for the adversarial risk when

classifiers memorise label noise, it is clear from the experiments in this thesis that

these bounds, as well as the one in literature, with regards to uniform label noise are

highly vacuous in practice, with regards to DNNs. This is because networks seem

to be much smoother in memorising mislabled points than these analyses assume.

The regions wrongly learnt by networks are much larger in size, rendering a large

amount of probability mass vulnerable. We also discuss the idea that Lipschitzness

might be harmful for robustness when label noise is present.

The adversarial path experiments we conducted show that the points that hurt

the adversarial accuracy the most when mislabeled, are the ones which force the

network to learn decision boundaries that “accommodate” the mislabeled points. If

in order to memorise a mislabeled point, networks tweak the decision boundary they

would have learnt otherwise in the absence of that mislabeled point, the adversarial

accuracy is massively hurt. Points close to the decision boundary are not the best

to label-flip, since they cause minimal change in the decision boundary. Points

very far away force the network to learn separate regions, becoming less effective.

58



CHAPTER 6. EARLY UNSUCCESSFUL EXPERIMENTS 59

These ideas could be used to carefully select points to label-flip in a dataset, given

budget constraints. Users who train their classifier on such a poisoned dataset will

have accurate, but also highly adversarially vulnerable classifiers. Such a vulnerable

classifier can be attacked once it gets deployed.



Bibliography

[1] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, and Mani B. Srivas-

tava. Genattack: Practical black-box attacks with gradient-free optimization.

CoRR, abs/1805.11090, 2018.

[2] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign

overfitting in linear regression. Proceedings of the National Academy of Sciences,

2020.

[3] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning

we need to understand kernel learning. In Proceedings of the 35th International

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,

Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Re-

search, pages 540–548. PMLR, 2018. URL http://proceedings.mlr.press/

v80/belkin18a.html.

[4] Adith Boloor, Xin He, Christopher Gill, Yevgeniy Vorobeychik, and Xuan

Zhang. Simple physical adversarial examples against end-to-end autonomous

driving models. 06 2019. doi: 10.1109/ICESS.2019.8782514.

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted

backdoor attacks on deep learning systems using data poisoning. CoRR,

abs/1712.05526, 2017.

[6] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras.

60

http://proceedings.mlr.press/v80/belkin18a.html
http://proceedings.mlr.press/v80/belkin18a.html


BIBLIOGRAPHY 61

Robustness (python library), 2019. URL https://github.com/MadryLab/

robustness.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In Proceedings of the 34th Interna-

tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,

6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,

pages 1126–1135. PMLR, 2017. URL http://proceedings.mlr.press/v70/

finn17a.html.

[8] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil.

Forward and reverse gradient-based hyperparameter optimization. In Pro-

ceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceed-

ings of Machine Learning Research, pages 1165–1173. PMLR, 2017. URL

http://proceedings.mlr.press/v70/franceschi17a.html.

[9] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

[10] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, and

Kilian Q. Weinberger. Simple black-box adversarial attacks. In Proceedings

of the 36th International Conference on Machine Learning, ICML 2019, 9-

15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of

Machine Learning Research, pages 2484–2493. PMLR, 2019. URL http:

//proceedings.mlr.press/v97/guo19a.html.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://arxiv.org/abs/1412.6572
http://proceedings.mlr.press/v97/guo19a.html
http://proceedings.mlr.press/v97/guo19a.html


BIBLIOGRAPHY 62

into rectifiers: Surpassing human-level performance on imagenet classification.

CoRR, abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

[12] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the ro-

bustness of a classifier against adversarial manipulation. In Advances in Neural

Information Processing Systems 30: Annual Conference on Neural Informa-

tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,

pages 2266–2276, 2017. URL https://proceedings.neurips.cc/paper/

2017/hash/e077e1a544eec4f0307cf5c3c721d944-Abstract.html.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[14] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions:

Black-box adversarial attacks with bandits and priors. In 7th International Con-

ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May

6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=

BkMiWhR5K7.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings,

pages 448–456. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/

ioffe15.html.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. In 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,

2015. URL http://arxiv.org/abs/1412.6980.

http://arxiv.org/abs/1502.01852
https://proceedings.neurips.cc/paper/2017/hash/e077e1a544eec4f0307cf5c3c721d944-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e077e1a544eec4f0307cf5c3c721d944-Abstract.html
https://openreview.net/forum?id=BkMiWhR5K7
https://openreview.net/forum?id=BkMiWhR5K7
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1412.6980


BIBLIOGRAPHY 63

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-

nical report, 2009.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems, volume 25. Curran Associates,

Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code

Recognition. Neural Computation, 1(4):541–551, 12 1989. ISSN 0899-7667.

doi: 10.1162/neco.1989.1.4.541. URL https://doi.org/10.1162/neco.1989.

1.4.541.

[20] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

URL http://yann.lecun.com/exdb/mnist/.

[21] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:

A continuous relaxation of discrete random variables. In 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-

26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:

//openreview.net/forum?id=S1jE5L5gl.

[22] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial at-

tacks. In 6th International Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-

ceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=

rJzIBfZAb.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb


BIBLIOGRAPHY 64

[23] Alex Nichol, Joshua Achiam, and J. Schulman. On first-order meta-learning

algorithms. ArXiv, abs/1803.02999, 2018.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pages 8024–8035. Cur-

ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[26] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin,

Fred A. Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias

of neural networks, 2019.

[27] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and J. Zico Kolter. Certi-

fied robustness to label-flipping attacks via randomized smoothing. In Proceed-

ings of the 37th International Conference on Machine Learning, ICML 2020,

13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learn-

ing Research, pages 8230–8241. PMLR, 2020. URL http://proceedings.mlr.

press/v119/rosenfeld20b.html.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://proceedings.mlr.press/v119/rosenfeld20b.html
http://proceedings.mlr.press/v119/rosenfeld20b.html


BIBLIOGRAPHY 65

[28] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden

trigger backdoor attacks. In The Thirty-Fourth AAAI Conference on Arti-

ficial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of

Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium

on Educational Advances in Artificial Intelligence, EAAI 2020, New York,

NY, USA, February 7-12, 2020, pages 11957–11965. AAAI Press, 2020. URL

https://aaai.org/ojs/index.php/AAAI/article/view/6871.

[29] Amartya Sanyal, Puneet K. Dokania, Varun Kanade, and Philip H. S. Torr.

How benign is benign overfitting ? In 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-

view.net, 2021. URL https://openreview.net/forum?id=g-wu9TMPODo.

[30] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P. Dickerson, and

Tom Goldstein. Just how toxic is data poisoning? A unified benchmark for

backdoor and data poisoning attacks. CoRR, abs/2006.12557, 2020.

[31] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George Driess-

che, Thore Graepel, and Demis Hassabis. Mastering the game of go without

human knowledge. Nature, 550:354–359, 10 2017. doi: 10.1038/nature24270.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence

learning with neural networks. In Advances in Neural Information Process-

ing Systems 27: Annual Conference on Neural Information Processing Sys-

tems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–

3112, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/

a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

[33] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

https://aaai.org/ojs/index.php/AAAI/article/view/6871
https://openreview.net/forum?id=g-wu9TMPODo
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


BIBLIOGRAPHY 66

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. In International Conference on Learning Representations, 2014. URL

http://arxiv.org/abs/1312.6199.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-

tion is all you need. In Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Sys-

tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–

6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[35] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja

Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexan-

der Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David

Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu

Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,

Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray

Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster

level in starcraft II using multi-agent reinforcement learning. Nat., 575(7782):

350–354, 2019. doi: 10.1038/s41586-019-1724-z.

[36] Han Xiao, Huang Xiao, and C. Eckert. Adversarial label flips attack on support

vector machines. In ECAI, 2012.

[37] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning (still) requires rethinking generaliza-

tion. Commun. ACM, 64(3):107–115, 2021. doi: 10.1145/3446776. URL

https://doi.org/10.1145/3446776.

http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3446776


BIBLIOGRAPHY 67

[38] Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer,

and Tom Goldstein. Transferable clean-label poisoning attacks on deep neural

nets. In Proceedings of the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Pro-

ceedings of Machine Learning Research, pages 7614–7623. PMLR, 2019. URL

http://proceedings.mlr.press/v97/zhu19a.html.

http://proceedings.mlr.press/v97/zhu19a.html


Appendices

68



Appendix A

Fitting Neural Networks to low

dimensional data

SGD did not learn networks that get a 100% training accuracy on the 2-dimensional

toy dataset 4.1 when poisons are very close to the means. This is the reason why

we could not add 2-dimensional visualisations for neural networks. With just a

few extra dimensions of noise, networks manage to learn the training set. Neural

Network classifiers resort to a simple, almost linear decision boundary, ignoring

mislabeled points altogether. Interestingly, we observed that more “scrambled” the

data is, quicker does SGD resort to memorising the data.

The following was an experiment to hash the datapoints using the function in

listing A.1 and get SGD to learn complex decision boundaries when the sense of

proximity of correctly labelled points is destroyed. Points in the instance space

which are close to each other in each of the clusters are no longer close after mapping

them to a different space, and the classifier is forced to resort to complex decision

boundaries if a low loss is to be achieved. Figure A.1 shows the decision boundaries

learned. SGD managed to hit a 100% training accuracy, and the same training setup

without the hash function was not able to do the same.

[b]

69



APPENDIX A. FITTING NEURAL NETWORKS TO LOWDIMENSIONAL DATA70

Listing A.1: Function used to map data points ∈ Rd to bit sequences that are shown

to the network. BITS is a hyperparameter such that 2BITS > P .

def hash ( x ) : # x i s a f l o a t i n g po in t number

P = 941

LN = 2ˆBITS

x = round down ( x ∗ LN) % P

return b i n a r y r e p r e s e n t a t i o n (x , l ength=BITS)

Rahaman et al. [26] showed that SGD learns classifiers that are biased towards

first capturing lower frequency components, and then learning higher frequency

ones, even if the amplitudes of these low frequency components is smaller. Further,

they experimented with a dataset generated using a low frequency function in 1

dimension, and embeded it in 2-dimensions on increasingly complex manifolds. High

frequency components were learned faster when this manifold has larger complexity,

and this might be happening here as well. Passing the data points through the

hash embeds this data in a higher dimensional space, in a complex manifold, where

high frequency components might be easier to capture. Reiterating, SGD does not

memorise this same dataset in the absence of the hash function.

Another interesting observation regarding this, was that adding batch-normalisation

[15] to the network manages to get the network to memorise the above training data,

without any hashing. Further, not shuffling training data across epochs also helps

in memorising data faster.



APPENDIX A. FITTING NEURAL NETWORKS TO LOWDIMENSIONAL DATA71

Figure A.1: Map showing a DNN classifier’s decision boundaries and data points
when the classifier is shown points after passing through the aforementioned function
A.1. The two classes are in red and blue, and green is the third class that poisons
were labelled with.


	Introduction
	The Problem
	Contributions

	Background
	The supervised classification problem
	Neural networks
	Training algorithms
	Loss functions
	Backpropagation

	Adversarial risk
	Standard attacks on DNNs in literature
	Fast Gradient Sign Method
	Projected Gradient Descent

	Benign overfitting and label noise
	Dataset poisoning

	Is Lipschitzness always beneficial for robustness?
	Crafting Label Noise
	Toy distribution
	Classes far away from the decision boundary
	Classes close to the decision boundary

	Flipping to a new class in MNIST
	Analysis using adversarial paths
	Finding a path from a point to the boundary
	Using adversarial paths to analyse poisons
	Adversarial Path Experiments


	Future Work: A Meta-Learning Approach
	Early Unsuccessful Experiments
	Building graphs on training points
	Building graphs on input space
	Using Low Rank representations
	Using the feature representations of a trained network
	Using the feature representations of a trained network as well as input space

	Colouring trick

	Conclusion
	Appendices
	Fitting Neural Networks to low dimensional data

